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SUMMARY 
The ' Newtonian-plus-centrifugal ' approximate solution 

(Busemann (1933) and Ivey (1948)) for hypersonic flow past 
plane and axially symmetric bluff bodies in gases with the ratio 
of the specific heats y constant and equal to unity is rederived 
using ' boundary layer' techniques together with the von Mises 
variables x and #. A method of successive approximations then 
gives a closer approximation to this solution for E = (y  - l)/(y + 1) 
small and the free-stream Mach number infinite. Formulae for 
the streamlines, shock shape and pressure distribution are deter- 
mined to this approximation. These formulae are valid for any 
plane or axially symmetric shape, giving the ' stand-off ' distance 
of the shock wave from the body as +log(4/3~) and E times the 
nose radius of curvature for plane and axially-symmetric flows 
respectively. Particular results are computed for a number of 
special shapes. For certain shapes, the theory has a singular 
point where the first approximation to the pressure vanishes 
(0 = 60" for a sphere). Actually, the theory is not applicable 
where the pressure becomes too small. The corresponding 
theory for gases of general thermodynamic properties is deduced, 
the approximation being valid provided the total energy of the 
gas is large compared with the energy contained in the trans- 
lational modes of the gas molecules. 

1. INTRODUCTION 
The term ' hypersonic ' has been coined to describe flow regimes where 

the free-stream Mach number is considerably in excess of unity. Theoreti- 
cally, several useful approximate solutions have been obtained for uniform 
hypersonic flow over slender bodies where the bow shock wave is attached 
and the fluid is assumed to be inviscid (Van Dyke 1954, Lees 1956). For 
bluff bodies, however, the bow shock wave is detached, and a mixed 
subsonic-supersonic region exists behind it. This makes the theoretical 
solution of the problem considerably more difficult. Nevertheless, by 
making the additional assumption that the ratio of the specific heats y of 
the gas is near one, an approximation to the pressure on the surface of a 
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symmetrical bluff body in an inviscid flow can be obtained (Ivey, Klunker & 
Bowen 1948, Busemann 1933). This is known as the ‘Newtonian-plus- 
centrifugal ’ solution for reasons which will be seen below. 

Behind an oblique shock wave in a uniform flow of velocity U, density p o  
and Mach number M ,  the normal component of velocity u, is given ( 5  2) by 

as M -+ 03, where the gas is assumed to be perfect with constant specific 
heats, and where 8 is the angle the shock makes with the oncoming flow. 
We see that as y + 1, u, + 0. Thus, in the limiting case of a strong shock 
wave and y near unity, it is possible for the bow shock wave to rest actually 
on the body, since the boundary condition for an inviscid fluid, that the 
normal component of velocity is zero, is satisfied. Fluid will still cross the 
shock, however ; for the density behind the shock is 

which becomes infinite as y -+ 1, and hence the mass flow pun across the shock 
wave remains finite. This fluid can be squeezed between the shock and the 
body, since the stream-tube area which is proportional to po U/pq becomes 
small for y N 1 (q is the velocity behind the shock wave and remains finite 
as y + 1 due to continuity of the tangential velocity ut = U cos 0 across 
the shock wave). The pressure behind the shock wave is 

2 
-po U2 sin2@ N p o  U2 sin2@ p =  y + l  

as y --f 1. This was given as the pressure on the body surface by Epstein 
(1931); but, as we shall see, it is incorrect for bodies of finite curvature. 
The name ‘ Newtonian ’ is given to this result, since it is the pressure on a 
body surface placed in a stream of inelastic particles as given by Newton 
(1689), the particles losing all their momentum norm :1 to the surface on 
impact. It would seem that to attempt to imply a closer relationship is 
questionable, for the highly compressed gas discussed here bears little 
resemblance to the “ medium rarum quod ex particularis quam minimis 
quiescentibus aequilibus et ad aequalis ab invicem distantes libere dispositis 
constat ” which Newton postulates. 

For bodies of finite curvature, however, the pressure on the body differs 
from that upon the shock, since there is a finite amount of fluid in the narrow 
region between the two. The pressure difference is equal to the centrifugal 
force on this layer of fluid. Taking this into account leads to the ‘ Newtonian- 
plus-centrifugal’ solution given by Ivey, Klunker & Bowen (1948) and 
anti.cipated by Busemann (1933). 

In this paper, we will follow these authors in using the ‘ strong shock ’ 
approximation for large M ,  but will assume E = (y - l)/(y -i- 1) to be small 
but not zero, with the solution for E = 0 as a first approximation in the 
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solution for infinite Mach number. This successive approximation 
procedure is something like expanding in powers of E ;  the solution will 
be obtained as far as the first term in E .  

In  $2, the conditions across the shock wave are derived from the 
Rankine-Hugoniot relations. A further simplification is introduced by 
assuming the gas to be perfect with constant specific heats. In  practice, 
of course, the conditions for such an assumption to be valid will not prevail. 
However, the theory will be developed throughout using this assumption 
in order to obtain a definite result. The modifications to be introduced 
if this is not so are discussed in $ 7, where the solution for a gas with arbitrary 
thermodynamic properties is given. 

The ‘ Newtonian-plus-centrifugal ’ solution for two- and three- 
dimensional flow is then obtained in $ 3  from the equations of momentum, 
continuity and energy for a compressible inviscid flow without heat 
conduction. We assume that between the shock wave and the body there 
is a thin ‘boundary layer’ in which changes perpendicular to the body 
surface are large compared with those along the body. As for other 
boundary layers, we assume the layer thickness is small compared with 
the body dimensions and that the velocity component normal to the body 
is small compared with that along the body, or, alternatively, that the 
streamlines deviate only slightly from the body shape. A measure of the 
magnitude of the variables being given by their values on the shock wave, 
the density will be of the order of pole and the pressure of the order of poU2, 
We must not, however, be led into making too close a parallel between 
this boundary layer and the classical viscous boundary layer where in most 
cases any centrifugal effects are negligible. Introducing the ordinary 
boundary layer coordinates (x, y), the momentum equation in the x-direction, 
approximated in the above manner, states that the velocity component u 
in the x-direction is constant along streamlines. (This is because with 
E small the enthalpy changes very little in an adiabatic expansion.) The 
momentum equation in the y-direction gives the presure gradient normal 
to the body as due to the centrifugal forces product d by body curvature 
alone. From this, the pressure at any point of the layer is obtained as a 
function of the stream function y5 (or, in axially symmetric flow, the Stokes 
stream function) and the coordinate x. Using the energy equation in the 
form of constancy of entropy along streamlines, the density can also be 
obtained in terms of these variables. T o  this approximation the shock is 
assumed to have the body shape. Finally, the position of each streamline 
can be derived by integration from a knowledge of p and u as functions 
of x and #. By replacing y5 by its first approximation on the shock wave 
in this expression, we obtain the shock shape. This result is given in $ 4  
and plotted in figure 3 for the cases of the circular cylinder, parabolic 
cylinder, sphere and paraboloid of revolution. Knowledge of the stream- 
lines of the flow and the shock shape enables us to calculate the small 
component of velocity v parallel to y and a higher approximation to u, 
and hence obtain a second approximation to the pressure ($6). In 
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particular, the variation of the pressure on the surface of a sphere is 
computed and plotted in figure 5. 

T h e  velocity tangential to the shock wave increases as we move away 
from the stagnation point; and hence, on many bluff bodies (those on 
which the curvature does not decrease with distance from the stagnation 
point), the centrifugal force on the fluid will increase with increasing 
distance from the stagnation point. T h e  pressure rise across the shock wave, 
however, being proportional to the normal velocity, will decrease. Con- 
sequently, the pressure drop between the shock and the body may eventually 
annul the pressure rise across the shock wave, and the pressure as calculated 
from the theory will fall to zero on the body. The  point where this happens 
is a singular point of the theory, the approximation not being valid there. 
This difficulty arises from the failure of the first approximation at this 
point. It is no longer possible to assume that the stream-tube area is still 
small enough for the shock wave to rest approximately on the body surface 
once the pressure on the body has fallen to a small fraction of poU2. T h e  
problem then arises of finding the first approximation to the shock shape 
in this region. It would seem impossible to do this without making some 
further assumption, since, immediately we admit the layer between the 
shock wave and the body to be no longer thin, we are beset with a further 
difficulty of having two velocity components of the same order of magnitude. 
The  form which this further assumption should take remains a matter for 
conjecture. T h e  streamlines as they emerge from the narrow layer 
presumably fan out to cover the region between the shock and the body. 
Several assumptions have been tried as to the nature of this fanning-out, 
such as allowing the gas to separate from the surface, but none seems to 
give results of the magnitude required from experimental evidence. They 
will not, therefore, be further discussed. T h e  restrictions implied by this 
singularity can best be seen by consideration of a few examples. Un- 
fortunately, it would appezr that the circular cylinder and sphere are 
particularly bad from this Lioint of view, the approximation breaking down 
at 54"44' and 60" respectively from the front stagnation point. On a 
parabolic cylinder and paraboloid, the position is much more favourable, 
the singular point being situated at infinity in both cases. However, even 
on these shapes a position is reached where the pressure falls to a value 
too small for the theory to be valid. 

The  assumptions underlying the theory introduced in this paper, 
namely, that the Mach number is infinite and the ratio of the specific heats 
of the gas is nearly unity, are only approximately true in practice. I n  the 
hypersonic regime the ratio of the specific heats for air reaches a minimum 
of about 1.2. At large Mach numbers (and hence high temperatures) 
dissociation of the gas is almost certain to be well advanced. Variation of 
the molecular weight of the gas with temperature and pressure and, more 
important, the large variation in specific heats must then be taken into 
account. This theory can be extended ( 5  7 )  to cover gases of quite arbitrary 
thermodynamic properties, provided the parameter E is replaced by 

FvM, 2 B  
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K-l = p0/pB (where ps is the density on the shock wave). T h e  parameter K 
is not necessarily constant, however. The  solution obtained in 5 7 holds 
for large values of K. 

An interesting feature of the flow discussed here is the apparently large 
shear in the layer between the shock and the body, even on the assumption 
of inviscid flow. Moreover, the 
component of velocity u,  since it is constant to the first approximation 
along streamlines, is zero upon the body itself (as the body surface is the 
streamline through the stagnation point). This being so, the non-slip 
condition at the surface for a viscous fluid is already satisfied to this 
approximation. It would seem that, on this account, viscosity may not 
play such an important part in the flow as expected. The  theory does, 
however, neglect heat conduction, which will be especially important in 
regions near the stagnation point where gas temperatures are large. 
Nevertheless, this may not have too disastrous an effect, as we may expect 
heat conduction to lead to lower temperatures at the body surface and 
hence a thinning of the boundary layer. 

A further difficulty which arises in considering a real gas is that the 
equilibrium assumed behind the shock wave may take some time to achieve. 
Relaxation times may be quite large for vibration and dissociation, which 
would be excited at the high temperatures the gas is likely to experience. 
This  would cause the ratio of the specific heats to vary considerably in the 
flow immediately behind the shock wave. The  relaxation time being 
roughly proportional to the density, the importance of this effect is 
determined by the size of the parameter (pd)-l, where d is a length 
determining the scale of the flow. 

T h e  results given here seem to agree fairly well with a solution given by 
Lighthill (1956) in cases where K is large. This  solution refers to conditions 
near the stagnation point of a sphere, comparison being made only in that 
region. The  ‘ stand-off ’ distance E of the shock wave on a sphere disagrees, 
however, with the value $E given by Schwartz & Eckermann (1955). This 
may be due to their making some assumptions with regard to the flow near 
the stagnation point. Their experimental results would seem to confirm 
neither value. Experimental results given by Oliver (1956) (on flow past 
a cylinder with a hemispherical nose) for the pressure on the body surface 
seem to agree more closely with the original ‘ Newtonian ’ solution than the 
modified one. T h e  Mach number in these experiments was, however, 
still quite low (about six). 

During the preparation of this paper for publication, the author’s 
attention was drawn to the (then unpublished) work by Chester (1956). 
Chester also treats the present problem by a process of successive 
approximation, starting with the ‘ Newtonian-plus-centrifugal ’ solution. 
It was decided, however, to publish the two results separately as his approach 
to  the problem is different from the present one, and also the further 
development of the theory proceeds along different lines. In  so far as it 
is possible to compare Chester’s results with those given here, they are 
identical. 

This  shear is almost linear (figure 4). 
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2. THE SHOCK CONDITIONS 

,4n oblique shock wave makes an angle 0 with a uniform flow of velocity 
U, the density, pressure and enthalpy in the flow being po, p, and io 
respectively (figure 1). Behind the shock the velocities tangential and 
normal to the shock wave are ut and u T L ;  and the pressure, density and 
enthalpy are p , ,  p1 and i, respectively. Normal to the shock wave the 
Kankine-Hugoniot equations (stating continuity of mass flow, momentum 
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Figure 1 .  T h e  variables at the shock wave. 

and energy) hold. Tangential to the shock wave the component of velocity 
is continuous. From these relations, together with a knowledge of the 
thermodynamics of the gas, we obtain the conditions behind the shock 
wave. Thus, 

poUsin@ = p,urrr  1 
(2.1) 

po+p,U2sin2@ = pl+plu:,  I 
io+iU2sin20 = i,+iu:, 1 

ucoso = 211, J 

and il = i l ( P l , f d >  (2.2) 

I 

the latter equation being a purely thermodynamical relationship. For 
hypersonic flow the dynamic terms on the left-hand side are much larger 
than the state rariables p ,  and io. Thus, the equations (2.1) may be 
approximated as 

1 

u c o s o  = Uk I 

po Usin 0 = p1 u,, 

po 712 sin2@ = p ,  + p1 u,, 1 

+712sin2@ = il+&u:, 

2 1  

(2  3) t 
I 

2 6 4  
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Alternatively, equation (2.3) can be written in terms of K = pl/po as 
1 11 1 

UsinO K ’  p,U2sin20 U2sin20 2 
- -  un - -  1 Pl - - I - ~ ,  = - ( l - & ) ,  (2.4) 

and 
Also, 

U f  = u c o s o .  

Pl  2 .  
- -  ilP1 - * 

In  general, the shock equations (2.4) are solved for K by substituting il 
and p ,  into the thermodynamic relation in the form p = O(p,i). If K is 
large, however, a method of successive approximation is found to converge 
very rapidly; for i, is known from (2.4) to be very nearly iU2s in20 ,  and 
for given il the ratio ilpl/pl (which by (2.5) determines K )  varies only 
slowly with p1 or with p, and so can be determined by trying successively 
different values of p1 and p,. This ratio is 3/2 times the ratio of the total 
enthalpy to the translational energy of the molecules, which would be 
expected to be large for real gases in hypersonic flow. Hence, the 
assumption that K is large can be interpreted as ip/p being large in the 
region behind the shock wave. 

For K large, we see from equation (2.4) that the normal component of 
velocity is small, and the density large behind the shock wave. 

For a perfect gas with constant specific heats, K is a constant independent 
of 0, and equals E - ~  = ( y  + l ) / ( y -  1). Thus the assumption of large K 
requires y to be nearly unity for such a gas. The  theory will be developed 
for this ideal gas in the following sections. 

3 .  THE EQUATIONS OF MOTION 
Consider flow past a symmetrical bluff body either plane or axially 

The  shock wave symmetric, placed in a uniform stream. of velocity U. 

Figure 2. The curvilinear coordinate system used in the boundary lnyer. 
S,shock; B, body. 
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in front of the body will be detached and lie a distance &-usually referred 
to as the ‘stand-off’ distance-upstream of the stagnation point. We 
introduce the usual boundary layer coordinates (x,y) (figure 2). The y-axis 
is normal to the body surface, and the x-axis lies along the body in the 
plane formed by the normal and the direction of the uniform stream. 
A further coordinate z is introduced on the body surface, such that (x, y ,  z )  
form a right-handed system of axes. The elements of length in the (x,y,  z )  
directions are denoted by hdx, dy and kdz respectively. The  case of two- 
dimensional flow can be reproduced by putting k = 1. 

The equations of momentum, continuity and energy may then be 

+V- f U Z l K +  - - = 0, ilP l a p  ax 1 written u au au 
h ax ay 
- _  

+V- - U 2 K +  - - = 0, 
P l a p  aY i u av av 

h ax ay - -  

a a 
ax aY 
- (kpu) + - (hkpv) = 0, 

I uas as 
h Z  ay 

+o- = 0, 

where S is the entropy and K the curvature of the line : y = constant. We 
assume now that the stream tube area is small behind the shock wave when 
E is small, and it is therefore possible, in the limit E 3 0, for the shock to 
rest on the body. For small E we assume a priori that the distance of the 
shock from the body is O(E),  and that slope of the shock relative to the body 
is O(E). (In the two-dimensional case it will be seen that it is later necessary 
to modify this assumption. These magnitudes then become O(e loge).) 
On the shock, u,/U = O(E) and ul/U = 0(1) ; and thus, resolving in the 
direction of the coordinate axes, we have u /U = 0 ( 1 )  and v / U  = O(E) on 
the shock, also p/poU2 = O(1) and pipo = O(E-~ )  from (2.4). In  the flow 
behind the shock wave, these variables will have the same orders of 
magnitude. Changes across the thin boundary layer between the shock 
and the body will be large compared with those along it. Assuming that 
the above conditions hold, except perhaps in regions near the stagnation 
point, we introduce the new variables 

and 

and then the dashed variables are all O(1). Substituting in (3.1) and noting 
that h, R and K are 0(1), we obtain 

(3.3) 
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Assuming the gas to be perfect, we have S =p/p' and hence 

(3.4) 

Neglecting terms of higher order than the first, we therefore have, in terms 
of the original variables, 

1 au  au 
+v- = 0, ' I 

h ax ay I 
_ _  

- - == U2K, (3.5) 

with the continuity equation remaining unchanged. The  first equation 
of (3 .5)  states that the velocity component u is constant along streamlines, 
and the final equation states that the enthalpy is constant along streamlines. 
This is consistent with Bernoulli's equation which is, to this approximation, 

tu.+(2t)- I + €  p = *uz. 
P 

The  second equation of (3.5) demands that the pressure gradient normal 
to the body shall be that due to the centrifugal force produced by the 
curvature of the body alone. 

Introducing a stream function # to satisfy the continuity equation, we 

Equations (3.5) then state that u and p / p  are functions of t,b alone, and that 

4. THE EQUATION OF THE SHOCK AND STREAMLINES I N  TWO AND THREE 

The  mass of fluid flowing across the shock wave is pun, where u, is the 
DIMENSIONS 

velocity normal to the shock. Now, 

where l ,m  are the direction cosines of the normal to the shock wave. 
using (3.;6), this may be written 

By 

(4.2) 

where Z,, m, are the direction cosines of the tangent to the shock wave. 
If s is the distance measured along the shock wave, therefore, 
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O n  the shock wave pun = p,UsinO, where 0 is the angle of the shock 
to the oncoming flow, or, in terms of s, 

d.1 pun = p o U L  
ds ' (4.4) 

where qs(x) is the distance of the shock from the line of symmetry. Hence, 
from (4.3), p0u--" d.1 = - 1 d* -, 

ds k ds (4.5) 

(4.6) 
or 

Let us now assume i,b = 0 on the line of symmetry ; and then, since k = 1 
in two dimensions and k = qs in three dimensions, we have 

in two and three dimensions respectively. 
on the body itself away from the line of symmetry, then 

If ~(x) is the distance of a point 

qs = q(x) + Y(x)cos a)(%), (4.8) 
where CD is the angle of the body to the uniform flow direction and y = Y(x) 
is the position of the shock. Thus, if !I(%) is known, equation (4.7) together 
with equation (4.5) give $ as a function of x on the shock wave. On the 
assumption that Y(x) is small, however, 

in two and three dimensions respectively, if we neglect O(E). 
know $ explicitly on the shock wave : 4 = poUY(x), say. 

Thus we 

Also, 0 = CD + tan-1{h-1(dY/dx)], 

which gives on neglecting O(E), 
0 = CD. 

Thus  the shock conditions (§ 2) reduce to 

1 u = U[COS CD + O(E)], 

zi = O(U€),  

(4.10) 

P -  1 - _ -  
Po 

(4.11) I 

which together with (4.9) give the dependent variables as functions of C,!J 
on the shock wave. 

If we now introduce a new variable 5 defined by + = poUY"(f), then we 
can replace t,b by f which is the .Y coordinate of the point where the stream- 
line t,b crosses the shock wave. 
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From the equations of motion, u andplp are functions of #, and hence 

u = Ucos@((), (4.12) 

P 

of f ,  alone. Thus, using (4.11) we obtain 

and = EU2sinzQ(f) 

throughout the flow field. 
Also, lrom (3.8) 

or 
(4.13) 

where the suffix s refers to conditions on the shock wave at a station x. 
Now, K =: K~ = + O(E) and k = k,+ = + O(E) ; and hence 

(4.14) 

where u = u(x, t+!~ = poUY(t)) and K~ = o  = K ~ ,  etc. 
we obtain 

and therefore 

From (4.11) and (4.12) 

p, = poU2sin2@(x) and u = U c o s @ ( f ) ;  

€ 
= sinW(x) + 5 1 Y’(t)cos @ ( t )  dt. 

Po u2 ko x 
(4.15) 

This is the result given by Busemann (1933) and Ivey (1948). 
using (4.12), we obtain 

Again 

(4.16) 
sin2@(x) + 2 J‘ Y’(t)cos Q(t)  dt 1 

I -  _ -  P 1  ko 5 

sin2@(() J 
Po - - I  1 

It is now possible to reintroduce the coordinate y into the problem. 
For, from (3.7), we have 

(4.17) 

keeping x constant ; or, making the previous approximations and introducing 
(4.16), we obtain 

Y’(t)sin2@(t) dt -. 

sin2@(x) + 3 

for the equation of the streamlines. 
The above integral does not converge for the two-dimensional case, 

however, since cos@(t) = O(t)  as t + 0. In  the three-dimensional case the 
integrand has no such singularity, since the function Y’ = O(t) also. 

Y’(s)cos@(s) d S  cos@(t) (t 1 = 

ko x 
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In the two-dimensional problem, therefore, it is necessary to obtain a 
better approximation to ‘u which will be valid for t,!J or 5 small. It will be 
seen that magnitudes of the order of €loge will replace those taken to be 
O(E) in the previous approximation; and thus the error terms previously 
denoted by O(E) must be replaced by O(E1ogE). Bernoulli’s equation in 
the form (3.6) may still be expected to hold near the body, since u = 0 by 
the boundary condition there. The energy equation (3.1) for a perfect gas 
with constant specific heats may be written 

(4.18) 

where p ,  and px are the values of p and p where the streamline crosses the 
shock wave. Equations (4.18) and (3.6) together then give 

= ;Uz[l+O(~210g%)]. (4.19) 

Also, the pressure on the shock wave is, from (2.4), 

p = (1-E)pOU2sin2 (4.20) 

Substituting in (4.19), we obtain 

+ O ( ~ ~ I o g ~ c ) ]  , (4.21) 

where p ,  = p ( [ ,  5) and p is given by (4.15). 
The term in curly brackets is O ( ~ l o g ~ ) ,  and becomes important near 

the body surface where the first term is small. Since, however, this higher 
approximation is important only near the body surface, it will be sufficient 
to substitute its value actually on the body to obtain the position of the 
streamlines from (4.17). Thus, putting I) = 5 = 0 in the second term 
of (4.21), the required approximation for the velocity component u is 

u = CJ Cos2@(~)Y2Elog - [ P(x Po u2 O)1‘:‘9 
(4.22) 

where p ( x ,  5) is given by (4.15) (sinceY’(0 - 0 and p ( ( ,  5) N poU2 as 4 -+ 0). 
In  the two-dimensional case this will replace the original value of u in (4.17). 
Thus the equation for the streamlines = constant is given by 

. &  sin3@(t) dt y = E j ’  
0 R(x, t){cos2@(t) - 2E log R(x, 0))1‘2 ’ 

R(x, t) = sin2@(x) + @’ cos @(s)sin @(s) dS 
where 

in two dimensions, and 

where 

it i(t)sin30(t) dt 
- V = E j  . 0 Q(x, t)cos @(t) ’ 

0‘ .z G(x, t) = sinZ@(x) + - 1 cos @(s)sin @(s)q(s) ds 
V t  

(4.23) 

(4.24) 
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in three dimensions, the variables ko, K" and 7' having been replaced by 
~(x), -@' and sin@ respectively. On the shock wave, E = x, and hence 
the equation of the shock wave is obtained by replacing f by x in (4.23) 
or (4.24). 

The  validity of three formulae near the stagnation point is doubtful 
since the approximation that one velocity component is much larger than 
the other may not be true there, for both components of velocity are small 
in the neighbourhood. It will be shown later (tj5), however, that the 
formulae remain valid. Using (4.23) and (4.24), therefore, we can obtain 
the ' stand-off ' distances in two and three dimensions as 

and 

6 1  4 
a 2 3 ~ '  - = -€log-  

6 
a 
- 

(4.25) 

(4.26) 

by noting that q(t)  - f and @ - fr-  tia for t small, where a is the radius 
of curvature of the nose of the body. 

Geometrically, the simplest types of bluff bodies are, of course, the 
circular cylinder and the sphere. For these, @ = Qr - 19 and ~ ( x )  = a sin 8, 
where Q(= ./a) is the angle in the plane (or meridian plane) measured 
from the front stagnation and a is the radius. The  equations (4.23) and 
(4.24) then give 

r - a  cos3t dt 
a cos2Q - cos2t] {sin2t - 2~ log( 1 -$ sin2Q)j1I2 

E - - 

(4.27) 
to this approximation for a circular cylinder, and 

?-a 2, 4 cos3t dt - =.j 
a ,, +(sin 38 + sin3t) 

= ~ [ ( l - ~ ~ ) l o g ( ~ ) - ( ~ ) l o g ( l -  cr+p 2cr2+1 P c( +-$) P2 + 
a2 

+ 1 ,'3 tan-I - p v ' 3 ]  (4.28) 2a-p 
for a sphere, where CI = <'(sin3Q), p = sin(f/a) and Y is a polar coordinate 
measured from the centre of the sphere or cylinder. The  shock shape is 
deduced by putting f / a  = Q in (4.27) or (4.28). 

These formulae become useless near the singular point of the theory, 
given by R(aQ, 0) = 0 for (4.23) and Q(aQ, 0) = 0 for (4.24). For a circular 
cylinder this is 6' = 54"44', and for a sphere Q = 60'. For a parabolic 
cylinder or paraboloid of revolution, however, this singular point is removed 
to infinity. Equations (4.23) and (4.24) then become 

1' dt 

(4.29) 
';? 
Y 

3 ~ 6 ~ [ 1 +  (E2/462)l~g[l + ( Y2/46z)] 
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for a parabola, and 

(4.30) 
1'2 a p  Z P b  dt 

- = 2E 1 + -  
2h ' ( 46") J,, ( 1 + t z ) 1 ' z [ G + ( ~ ' / 2 b ) + ~ _ ( t ) ]  

for a paraboloid of revolution, where G ( t )  = t( 1 + t2)lIz ~t: sinh-1 t ,  (S, 1') 
is a system of Cartesian coordinates (with X along the line of symmetry 
and Y perpendicular to it) in which the parabola has an equation Y 2  = 4hLY, 
and S is the value of Y at the point where the streamline $ crosses the shock 
wave. Thus the shock wave is obtained by putting E = Y in (4.29) or 
(4.30). 

+ 

These results are plotted in figure 3. 

Figure 3. The distance of the shock wave away from the body as a function of 
the distance x from the stagnation point for In) a circular cylinder ( y  =-- 7 .l), 
(b) a parabolic cylinder ( y  = l . l ) ,  (c) a sphere, and (4 a paraboloid of 
revolution. a is the radius of eurvaturc of the body at the stagnation point. 

Figure 4. The first approximation to the velocity profiles in the boundary layer on 
a sphere at 0 = 20" and 30". 
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5. BEHAVIOUR OF SOLUTION NEAR THE STAGNATION POINT 

As has been pointed out in the previous section, the formulae given 
there may not be valid near the stagnation point where both components 
of velocity are small. That these formulae do in fact remain true can be 
shown in the following ma.nner. Near the stagnation point it is possible 
to consider the flow as incompressible, since the velocity components will 
all be small there. The simplification in the previous theory occurs because 
we are able to approximate the velocity term in Bernoulli’s equation by 
including only one component of velocity. It is now no longer possible to 
do this. Nevertheless it will be seen that a somewhat fortuitous piece of 
cancelling enables us to overcome this difficulty. 

Consider first the two-dimensional problem. The momentum equation 
in the normal direction is 

where (r,S) are polar coordinates with origin at the centre of curvature of 
the body near the stagnation point, and p is assumed constant. In the 
previous work we neglected the two ‘convective’ terms in the equation. 
Now, however, the velocity component u, is no longer small, and thus we 
approximate the equation as 

or, introducing the stream function $, 
a P UfI 

- ( p + i p u ; ) -  - = 0, a4 7 
,5.3) 

where + is chosen so that 
a .  a 

It will be noticed that the pressure in equation (3.8) has now been replaced 
by p + hpu?. Consequently, if we consider Bernoulli’s equation for in- 
compressible flow, viz. 

- ar = p u f l q -  

p + &p(u,2 + 24;) = 4pq; +p,, (5.4) 
where p ,  and q. are values on the shock wave, we see that replacing the 
pressure by p + $pu,“ reduces the problem once more to one containing the 
single component of velocity uo. Thus, integrating equation (5.3), we have 

where the suffix s denotes values on the shock wave at a station 9. 
Substituting for p+Qpu,2 from equation (5.4) into equation (5.5) and 
differentiating with respect to $, we obtain 
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Hence, by the cancellation of the term $puF, the problem is reduced once 
more to one containing uo only. Approximating the shock wave in this 
neighbourhood by X = - c + ( Y2/2d) + O( Y4),  where ( X ,  Y )  are Cartesian 
coordinates with origin at the stagnation point and the X-axis along the 
line of symmetry, we then have 

On the shock wave, # N poUY; and hence, retaining onIy first order in # 
in (S.6), we obtain 

where 
1 

M = - [1-2EfO(E)], 

P = -" I+o( l ) l ,  

P: d2 
E 

MPO 

and a is the radius of curvature of the body at the stagnal'on point. Solving 
(5.8), we then obtain 

neglecting terms which are o (1) on the right-hand side. 
(5.9) further, we have 

Approximating 

u;- -2 #2 = 3eU2sin2R, 
f n a  

assuming that 

Also, since 
d = a [ l  + o  (l)]. 

then 

(5.10) 

(5.11) 

which is the limiting form of (4.23). 
If we proceed in a similar manner for the three-dimensional case, we 

confirm the result (4.24) in the region of the stagnation point, but with 
an error term which is O(e3j2) and not O ( ~ ~ l o g ~ e )  as result (4.24) indicates. 

6. THE SECOND APPROXIMATION TO THE PRESSURE 

I n  $4, we obtained a second approximation to the shock shape and 
streamlines. From this result we can hence obtain the values of the 
variables in the region behind the shock wave to the second approximation. 
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T o  do this, we must consider a higher approximation to the equations of 
motion ( 3 . 5 ) .  The  momentum equation in the y-direction taken from (3.1) 
and written in terms of the variables (x,#) becomes 

aP 
a* 

av 
- - - z u ~ K + u ~ -  = 0, 
h dx 

or (6.1) 

In  $ 3 ,  the second term on the right-hand side was neglected completely. 
We must now seek a higher approximation to the first term and a first 
approximation to the second term. Integrating (6,1), we obtain 

From 94, we know the equation of the streamlines, 

y = f(x,t), or F(x,*), (6.3) 

(6.4) 

say. Then the equation of the shock is given by 
y = f(x, x) = Y(x). 

Thus  the angle the shock makes to the oncoming flow is {@ + tan-’(?-r’(x)/h)}, 
whence the pressure on the shock is 

p = poU2( 1 - €)sin2(@ + t a r 1 (  Y’(x)/h)} 

to the next approximation, 
From Bernoulli’s equation, we have 

and hence 

(6.5) 

(6.6) 

also, from the energy equation, 
--e P -  
P’ P$’ 

where p , ,  p, denote values at the shock wave. Thus, 

u2 = u2-- 1+€+2€ log-  + O ( E )  p +  Po ( P* p ,  

(6.7) 
where x = x, is the coordinate of the point on the shock where the streamline 
crosses it, and is related to the stream function by 

+ = POU[rl(XS) + % s ~ c ~ ~ @ . l l ~ s > l  
= *ppOU[q(xs) + Y(xJc0s @‘(x,)]2 (6.8) 
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Equation (6.7) then gives the in two and three dimensions respectively. 
second approximation to the velocity u. 

From equation (6.3), it f o l l o ~ s  that 

ax 
or 

Since we only require a first approximation to P', we can replace phk in (6.9) 
by its first approximation, and hence obtain 

(6.10) 

where P denotes the first approximation to the pressure given by (4.15), 
and P, its value on the shock wave where the streamline $ crosses it. 

Let us now introduce a variable f to replace the stream function #, 
putting * = P"U43 

= iPou?72(f) (6.11) 
in two and three dimensions respectively, and let us write this $ = p o U Y ( f )  
as before. The  equation (6.10) becomes 

T h e  variable x, is then related to f by 

(6.13) 

and equation (6.7) can be written 
'V ' ( f )  

ZL = Ucos @ ( f )  1 + Y([)W(f )  - - tan - i hO(0 

Noting in equation (6.2) that $s corresponds to f = x +  [Y(x)cos@(x)/~'(x)], 
we then obtain the pressure to the second approximation as 

Y . K~ W d'P p 
- sin2Q - c sin2Q + - sin 2~ - - 7 - c o s ~  + 

pov2- h0 ko 7 )  dx  

(6.15) 
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where K ( X ,  5) = K(X,Y = f(x, <)) = K , , ( x ) [ ~  - K , , ~ ( x ,  ()] to this approximation, 
k = 1 or ~ ( x )  + f ( x ,  <)cos @ and 

t 
sin2@ - (@'/k,,) P 

PX sin2@( () 

cos @(s)(d@/ds) ds 
- 2: - _  

The arguments of the functions in (6.15) have been left out when they 
are simply x. The  error in (6.15) is O(E210g2r) for two-dimensional flow, 
and O(r3j2) for three-dimensional. 

The  expression (6.15) can be evaluated for any body shape when the 
function @(x) is known. In  the case of a sphere, @ = 3.r - 8, and the pressure 
on the body surface becomes 

pp P = P l + E P 2 ,  (6.16) 

where sin 38 

and 
PI = m 9  

p ,  = cos28{ 2R' tan 8 -- 1) + R(8)cos 20 - 2( 1 - Q sin28) - 
- - 1 )'R(+)cos3+d++ - 1 0  1 Cos3+ log[-- sin 38 + sin3+ 

sin 8 . ,, sin8 I 3 sin 8 C O S ~ +  

sin3$(sin38 - sin3$) d$ 
(sin 38 + sin3$)2 + + Z sin 8 {sin38 j 

cos3$(sin36' - sin3$) d$) 
(sin 38 + sin3+)3 + 2 ~ 0 ~ ~ 3 8  1, J ' 

with cos3+d+ 

The  final three integrals inp, and the function A can each be obtained in terms 
of simple functions, but lack of space prevents us from quoting them in 

h ( 8 )  = j" . 
, sin 38 + sin3+ ' 

(4 (b) 
Figure 5 .  The pressurc coefficients p ,  and p ,  on the body surface, and the shock wave 

for a sphere. Total pressure p = p o U 2 ( p , + ~ p p ) .  S, shock; B, body. 
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full. The functions p ,  and p ,  are plotted in figure 5 .  We see that near the 
singular point wherep, is zero the pressure coeficientp, has a non-integrable 
singularity, i.e. p ,  N (sin 36')-813 as 6' 4 in-. This formulae can therefore not 
be expected to hold above 6' - 35". It is also possible, if a little care is 
exercised in dealing with the stream function, to obtain from (6.16) a simple 
expression for the pressure along the axis of symmetry, which is 

- = 1 - -  1 +  - 
Po P u2 2 " (r;:>"]) (6.17) 

giving a check on the result. 

7. GASES WITH ARBITRARY THERMODYNAMICAL PROPERTIES 

Under the conditions in which the previous theory holds, it becomes 
impossible to treat the gases as perfect with constant specific heats. It is 
necessary therefore to generalize the preceding theory to include gases 
which have quite arbitrary thermodynamical properties. In  fact, it will 
be found possible to deduce the previous results for such a gas provided 
that we have a knowledge of how the enthalpy varies with pressure and 
density. 

The shock equations can be written in the form given in equations (2.4). 
Provided, therefore, we know i = i (p ,  p ) ,  these equations can be solved to 
give u , ~ ,  ut, p and p on the shock wave. For K large, the magnitude of 
these variables is obtained from (2.4)) and we can therefore assume as 
before that the shock wave rests on the body to a first approximation. 
Hence we obtain u and v on the shock wave. Behind the shock wave the 
variables will have magnitudes of this order and, in particular, p/ip is small. 
We make the same approximations as before in the ' boundary layer ' between 
shock and body. The final equation of motion (3.1), the energy equation, 
written in terms of the enthalpy and in the coordinates x and +, is 

the derivatives being taken along streamlines. 
the shock wave, equation (7.1) becomes, to the first approximation, 

Since p/ip is small behind 

ai - = 0, ax 
or i = I ([) ,  say. 

equation states 

Thus u is constant along streamlines. The momentum equation in the 
y-direction remains unchanged, and hence the pressure is given by (4.15) 
as before. Thus we know p = p ( x , f )  and i = I ( [ )  from the shock 
,conditions and (4.5). The enthalpy of the gas being given as a function 
of pressure and density, we thus have the density behind the shock as 
p = Q[P(x,[), I([)],  say. Approximating the stream function as before 

F.M. 2 c  

Again, the velocity component normal to the body is small, and Bernoulli's 

i+ 4 ~ 2  = 4 u2. (7.3) 
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in (4.9), and using the integral (4.17), we obtain the equation of the stream- 
lines. In  the two-dimensional case, however, it is again necessary to obtain 
a better approximation for u near the body, i.e. for small. This is obtained 
from (7.1) by not completely neglecting the second term on the left-hand 
side, but replacing it by its first approximation. 

Then, 

where p ( x ,  5) = QCp(x, 0, I(<)],  and p is given by (4.15). Equation (7.3) 
then gives the required approximation to u. 

The formulae replacing (4.23) and (4.24) can then be written 

where p(x, s) = Q(poU2R(x, s), I(s)), with R(x, s) as defined in (4.23), for 
the two-dimensional case, and 

where p(x, t) = n(p0U2Q(x, t ) ,  I(t)), with Q(x,t) as defined in (4.24) for 
the three-dimensional case. The formulae (7.6) and (7.7) then give thq 
equations of the streamlines 5 = constant. On putting 5 = x, they give 
the equation of the shock wave. 

Having obtained the shock shape y = Y(x), it is then not very difficult 
to generalize the expression for the pressure (6.15) in a like manner to 
obtain 

where y = f ( x , l )  is the equation of the streamlines from (7.5) or (7.6), 
p(x, t )  = Q(P(x, t) ,  I ( t ) )  with P defined in (4.15), and 

4% ‘1 = K ( % Y  = Ax, [I), 

p = po U2[sin20 + H(O)] 

etc. as in (6.15). The pressure on a shock wave of angle 0 has been written 

(7.8) 
to this approximation, being deduced from the shock equations (2.4). 
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8. CONCLUSION 

387 

The theory developed above would seem to be useful in predicting the 
flow over many bluff bodies, both plane and axially symmetric. On all 
bodies, it gives a solution in regions near the nose for flows in which the 
Mach number is large and the density ratio across the shock wave large. 
However, difficulties arise in regions where the pressure falls below a certain 
value of the order of poU2/K. In these regions the solution is no longer 
valid. To obtain a solution at points beyond such a region, it would be 
necessary to make further assumptions about the flow. 

The author is greatly indebted to Professor M. J. Lighthill for much 
valuable help and encouragement throughout the preparation of this paper. 
The author is also grateful to the Department of Scientific and Industrial 
Research for a grant during the period of this research. 
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